Fractional Schrödinger equation with noninteger dimensions
نویسندگان
چکیده
The spatial and time dependent solutions of the Schrödinger equation incorporating the fractional time derivative of distributed order and extending the spatial operator to noninteger dimensions are investigated. They are obtained by using the Green function approach in two situations: the free case and in the presence of a harmonic potential. The results obtained show an anomalous spreading of the wave packet which may be related to an anomalous diffusion process. 2012 Elsevier Inc. All rights reserved.
منابع مشابه
Psi-series solution of fractional Ginzburg–Landau equation
One-dimensional Ginzburg–Landau equations with derivatives of noninteger order are considered. Using psi-series with fractional powers, the solution of the fractional Ginzburg–Landau (FGL) equation is derived. The leading-order behaviours of solutions about an arbitrary singularity, as well as their resonance structures, have been obtained. It was proved that fractional equations of order α wit...
متن کاملractional statistical mechanics
The Liouville and first Bogoliubov hierarchy equations with derivatives of noninteger order are derived. The fractional Liouville equation is obtained from the conservation of probability to find a system in a fractional volume element. This equation is used to obtain Bogoliubov hierarchy and fractional kinetic equations with fractional derivatives. Statistical mechanics of fractional generaliz...
متن کاملContinuous Medium Model for Fractal Media
We consider the description of the fractal media that uses the fractional integrals. We derive the fractional generalizations of the equation that defines the medium mass. We prove that the fractional integrals can be used to describe the media with noninteger mass dimensions. The fractional equation of continuity is considered. PACS: 05.45.Df; 47.53.+n; 05.40.-a
متن کاملFractional Fokker-Planck equation for fractal media.
We consider the fractional generalizations of equation that defines the medium mass. We prove that the fractional integrals can be used to describe the media with noninteger mass dimensions. Using fractional integrals, we derive the fractional generalization of the Chapman-Kolmogorov equation (Smolukhovski equation). In this paper fractional Fokker-Planck equation for fractal media is derived f...
متن کاملFractional dynamics of systems with long-range space interaction and temporal memory
Field equations with time and coordinate derivatives of noninteger order are derived from a stationary action principle for the cases of power-law memory function and long-range interaction in systems. The method is applied to obtain a fractional generalization of the Ginzburg–Landau and nonlinear Schrödinger equations. As another example, dynamical equations for particle chains with power-law ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied Mathematics and Computation
دوره 219 شماره
صفحات -
تاریخ انتشار 2012